Math 299

11.1: Divisibility Properties of Integers

Prime Numbers and Composites

Definition: If p is an integer greater than 1, then p is a **prime number** if the only divisors of p are 1 and p.

Definition: A positive integer greater than 1 that is not a prime number is called **composite**.

In other words, a composite number is a positive integer that has at least one positive divisor other than one or itself.

So, if n > 0 is an integer and $\exists a, b \in \mathbb{Z}$, 1 < a, b < n such that $n = a \times b$, then n is a composite number.

Sieve of Eratosthenes and Interesting Facts about Primes

- There are no efficient algorithms known that will determine whether a given integer is prime or find its prime factors.
- The above is used in many of the current cryptosystems.
- There is no known procedure that will generate prime numbers.
- **Twin primes conjecture**: There are infinitely many prime pairs, that is, consecutive odd prime numbers, such as 5 and 7, or 41 and 43. No one so far has been able to prove or disprove it.
- Goldbach's conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. No one so far has been able to prove or disprove it.

Sieve of Eratosthenes:

11.2 The Division Algorithm

Definition: Let a, b be non-zero integers. We say

b is **divisible** by a (or a divides b)

if there is an integer x such that $a \cdot x = b$. And if this is the case we write $a \mid b$, otherwise we write $a \nmid b$.

Theorem 1. For all integers a, b, and c,

- 1. If $a \mid b$ and $a \mid c$, then $a \mid (xb + yc) \quad \forall x, y \in \mathbb{Z}$.
- 2. If $a \mid b$, then $a \mid (bc)$.
- 3. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Theorem 2. Let $a, b \in \mathbb{Z} - \{0\}$.

- 1. If $a \mid b$ and $b \mid a$, then a = b or a = -b.
- 2. If $a \mid b$, then $|a| \leq |b|$.

Theorem (The Division Algorithm). Let *a* and *b* be integers with a, b > 0. There exist unique integers *q* and *r* such that b = aq + r and $0 \le r < a$.

Definition: b = aq + r and $0 \le r < a$

- *b* is called the **dividend**.
- a is called the **divisor**.
- q is called the **quotient**.
- r is called the **remainder**.

Theorem (The Division Algorithm, General Form). Let *a* and *b* be integers with a, b with $a \neq 0$. There exist unique integers *q* and *r* such that b = aq + r and $0 \leq r < |a|$.

Example. Find the quotient and remainder if

1.
$$b = 27, a = 4$$

2. $b = -27, a = -4$

3. b = 27, a = -4

Proof of the Division Algorithm.

The set of integers modulo n Let a relation R defined on \mathbb{Z} by aRb if $a \equiv b \pmod{n}$. With the aid of the *Division Algorithm*, the equivalence class of an integer r in the set of \mathbb{Z}_n is

 $[r] = \{ nq+r : q \in \mathbb{Z} \} = \{ \cdots, -2n+r, -n+r, r, n+r, 2n+r, \cdots \}.$

That is, [r] consists of all those integers having a remainder of r when divided by n.

Remark:

- A. $\mathbb{Z}_n = \{[0], [1], \cdots, [n-1]\}.$
- B. Every equivalence class [i] in \mathbb{Z}_n is nonempty.
- C. The equivalence classes $[0], [1], \dots, [n-1]$ are pairwise disjoint, that is, $[i] \cap [j] = \emptyset$ for $i \neq j$.
- D. $\mathbb{Z} = [0] \cup [1] \cup \cdots \cup [n-1].$
- E. Therefore, Z_n is a partition of \mathbb{Z} .

11.3 Greatest Common Divisor

Definition: Given two integers b and c at least one of which is not 0, we say a is the **greatest common divisor** of b and c if a is the greatest among all common divisors of b and c. The greatest common divisor of b and c is denoted by gcd(b, c) or simply (b, c).

Why do we require that "at least one of b and c be nonzero"? Could we make sense of gcd(0,0)?

Find

- 1. gcd(24, 36)
- 2. gcd(22, 35)

Theorem 3. For any integers *a* and *b*, the following properties hold:

- 1. gcd(a,b) = gcd(b,a),
- 2. $gcd(a,b) \ge 1$,
- 3. gcd(a,b) = gcd(|a|,|b|),

4.
$$\operatorname{gcd}\left(\frac{a}{\operatorname{gcd}(a,b)}, \frac{b}{\operatorname{gcd}(a,b)}\right) = 1,$$

- 5. $gcd(a, b) = gcd(a + nb, b), \forall n \in \mathbb{Z}.$
 - Use the following lemma to prove 5.

Lemma. If $a \mid b$ and $a \mid c$, then $a \mid (mb + nc)$ for all integers m and n.

Definition. An integer n is called a **linear combination** of $x, y \in \mathbb{Z}$ if $\exists k, m \in \mathbb{Z}$ such that mx + ky = n.

- Is 1 a linear combination of 5 and 8?
- Is 7 a linear combination of 2 and 6?

Theorem 4. Let a and b be integers that are not both 0. Then gcd(a, b) is the least positive integer that is a linear combination of a and b.

Theorem 5. Let a and b be integers that are not both 0. Then d = gcd(a, b) if and only if d that positive integer which satisfies the following two conditions:

- *d* is a common divisor of *a* and *b*;
- if c is any common divisor of a and b, then $c \mid d$.